Углеводы. Химия углеводов Группа углеводов примеры физические свойства

💖 Нравится? Поделись с друзьями ссылкой

Одну из наиболее важных функций в живых организмах выполняют углеводы. Они являются источником энергии и участвуют в метаболизме.

Общее описание

Другое название углеводов - сахара. Углеводы имеют два определения:

  • с точки зрения биологии - биологически активные вещества, являющиеся источником энергии для живых организмов, в том числе человека;
  • с точки зрения химии - органические соединения, состоящие из нескольких карбонильных (-СО) и гидроксильных (-ОН) групп.

Элементы, образующие углевод:

  • углерод;
  • водород;
  • кислород.

Общая формула углеводов - C n (H 2 O) m . Минимальное количество атомов углерода и кислорода - три. Соотношение водорода и кислорода всегда 2:1, как в молекуле воды.

Источником углеводов является процесс фотосинтеза. Углеводы составляют 80 % сухой растительной массы и 2-3 % - животной. Углеводы входят в состав АТФ - универсального источника энергии.

Виды

Углеводы - многочисленная группа органических веществ. Они классифицируются по двум признакам:

  • количеству атомов углерода;
  • количеству структурных единиц.

В зависимости от количества атомов углерода в одной молекуле (структурной единице) выделяют:

  • триозы;
  • тетрозы;
  • пентозы;
  • гексозы;
  • гептозы.

Молекула может включать до девяти атомов углерода. Наиболее значимыми являются пентозы (C 5 H 10 O 5) и гексозы (C 6 H 12 O 6). Пентозы являются компонентами нуклеиновых кислот. Гексозы входят в состав полисахаридов.

Рис. 1. Структура моносахарида.

По второму признаку классификации углеводы бывают:

  • простыми , состоящими из одной молекулы или структурной единицы (моносахариды);
  • сложными , включающими множество молекул (олигосахариды, полисахариды).

    Особенности сложных структур описаны в таблице углеводов.

    Рис. 2. Структура полисахарида.

    Одна из наиболее значимых разновидностей олигосахаридов - дисахариды, состоящие из двух моносахаридов. Они служат источником глюкозы и выполняют строительную функцию в растениях.

    Физические свойства

    Моносахариды и олигосахариды имеют схожие физические свойства:

    • кристаллическое строение;
    • сладкий вкус;
    • растворимость в воде;
    • прозрачность;
    • нейтральная pH в растворе;
    • низкие температуры плавления и кипения.

    Полисахариды - более сложные вещества. Они нерастворимы и не имеют сладкого привкуса. Целлюлоза - разновидность полисахарида, входящая в состав клеточных стенок растений. Аналогичный целлюлозе хитин входит в состав грибов и панцирей членистоногих. Крахмал накапливается в растениях и распадается на простые углеводы, которые являются источником энергии. В животных клетках резервную функцию выполняет гликоген.

    Химические свойства

    В зависимости от структуры каждому углеводу характерны особые химические свойства. Моносахариды, в частности глюкоза, подвергаются многоступенчатому окислению (в отсутствии и присутствии кислорода). В результате полного окисления образуется углекислый газ и вода:

    C 6 H 12 O 6 + 6O 2 → 6CO 2 +6H 2 O.

    В отсутствии кислорода под действием ферментов происходит брожение:

    • спиртовое -

      C 6 H 12 O 6 → 2C 2 H 5 OH (этанол) + 2CO 2 ;

    • молочнокислое -

      C 6 H 12 O 6 → 2CH 3 -CH(OH)-COOH (молочная кислота).

    Иначе с кислородом взаимодействуют полисахариды, сгорая до углекислого газа и воды:

    (C 6 H 10 O 5)n + 6O 2 → 6nCO 2 + 5nH 2 O.

    Олигосахариды и полисахариды разлагаются до моносахаридов при гидролизе:

    • C 12 H 22 O 11 + H 2 O → C 6 H 12 O 6 + C 6 H 12 O 6 ;
    • (C 6 H 10 O 5)n + nH 2 O → nC 6 H 12 O 6 .

    Глюкоза реагирует с гидроксидом меди (II) и аммиачным раствором оксида серебра (реакция серебряного зеркала):

    • CH 2 OH-(CHOH) 4 -CH=O + 2Cu(OH) 2 → CH 2 OH-(CHOH) 4 -COOH + Cu 2 O↓ + 2H 2 O;
    • CH 2 OH-(CHOH) 4 -CH=O + 2OH → CH 2 OH-(CHOH) 4 -COONH 4 + 2Ag↓ +3NH 3 + H 2 O.

    Рис. 3. Реакция серебряного зеркала.

    Что мы узнали?

    Из темы химии 10 класса узнали об углеводах. Это биоорганические соединения, состоящие из одной или нескольких структурных единиц. Одна единица или молекула состоит из карбонильных и гидроксильных групп. Различают моносахариды, состоящие из одной молекулы, олигосахариды, включающие 2-10 молекул, и полисахариды - длинные цепочки из множества моносахаридов. Углеводы сладкие на вкус и хорошо растворимы в воде (исключение - полисахариды). Моносахариды растворяются в воде, окисляются, взаимодействуют с гидроксидом меди и аммиачным оксидом серебра. Полисахариды и олигосахариды подвергаются гидролизу. Полисахариды горят.

    Тест по теме

    Оценка доклада

    Средняя оценка: 4.6 . Всего получено оценок: 176.

Углеводами

Виды углеводов.

Углеводы бывают:

1) Моносахариды

2) Олигосахариды

3) Сложные углеводы

крахмал12.jpg

Основные функции.

Энергетическая.

Пластическая.

Запас питательных веществ.

Специфическая.

Защитная.

Регуляторная.

Химические свойства

Моносахариды проявляют свойства спиртов и карбонильных соединений.

Окисление.

a) Как и у всех альдегидов, окисление моносахаридов приводит к соответствующим кислотам. Так, при окислении глюкозы аммиачным раствором гидрата окиси серебра образуется глюконовая кислота (реакция "серебряного зеркала").

b) Реакция моносахаридов с гидроксидом меди при нагревании так же приводит к альдоновым кислотам.

c) Более сильные окислительные средства окисляют в карбоксильную группу не только альдегидную, но и первичную спиртовую группы, приводя к двухосновным сахарным (альдаровым) кислотам. Обычно для такого окисления используют концентрированную азотную кислоту.

Восстановление.

Восстановление сахаров приводит к многоатомным спиртам. В качестве восстановителя используют водород в присутствии никеля, алюмогидрид лития и др.

III. Специфические реакции

Кроме приведенных выше, глюкоза характеризуется и некоторыми специфическими свойствами - процессами брожения. Брожением называется расщепление молекул сахаров под воздействием ферментов (энзимов). Брожению подвергаются сахара с числом углеродных атомов, кратным трем. Существует много видов брожения, среди которых наиболее известны следующие:

a) спиртовое брожение

b) молочнокислое брожение

c) маслянокислое брожение

Упомянутые виды брожения, вызываемые микроорганизмами, имеют широкое практическое значение. Например, спиртовое – для получения этилового спирта, в виноделии, пивоварении и т.д., а молочнокислое – для получения молочной кислоты и кисломолочных продуктов.

3. Стереоизомерия моносахаридов D- и L-ряды. Открытые и циклические формулы. Пиранозы и фуранозы. α- и β-аномеры. Циклоцепная таутомерия. Явление муторотации.

Способность ряда органических соединений вращать плоскость поляризации поляризованного света вправо или влево называют оптической активностью. Исходя из сказанного выше, следует, что органические вещества могут существовать в виде правовращающих и левовращающих изомеров. Такие изомеры получили название стереоизомеров, а само явление стереоизомерии.

В основе более строгой системы классификации и обозначения стереоизомеров лежит не вращение плоскости поляризации света, а абсолютная конфигурация молекулы стереоизомера, т.е. взаимное расположение четырех обязательно разных замещающих групп, находящихся в вершинах тетраэдра, вокруг локализованного в центре атома углерода, который получил название асимметрического атома углерода или хирального центра. Хиральные или, как их еще называют, оптически активные атомы углерода обозначают в структурных формулах звездочками

Таким образом, под термином стереоизомерия следует понимать различную пространственную конфигурацию заместителей у соединений, имеющих одну и ту же структурную формулу и обладающих одинаковыми химическими свойствами. Такой вид изомерии называют также зеркальной изомерией. Наглядным примером зеркальной изомерии могут служить правая и левая ладони руки. Ниже приведены структурные формулы стереоизомеров глицеринового альдегида и глюкозы.

Если у асимметрического атома углерода в проекционной формуле глицеринового альдегида ОН-группа располагается справа, такой изомер называют D-стереоизомером, а если ОН-группа расположена слева –L-стереоизомером.

В случае тетроз, пентоз, гексоз и других моноз, которые обладают двумя и более асимметрическими атомами углерода, принадлежность стереоизомера к D- или L-ряду определяют по расположению ОН-группы у предпоследнего атома углерода в цепи – он же является последним асимметрическим атомом. Например, для глюкозы оценивают ориентацию ОН-группы у 5-ого атома углерода. Абсолютно зеркальные стереоизомеры называют энантиомерами или антиподами.

Стереоизомеры не отличаются по своим химическим свойствам, но отличаются по биологическому действию (биологической активности). Большая часть моносахаридов в организме млекопитающих относится к D-ряду – именно к этой конфигурации специфичны ферменты, ответственные за их метаболизм. В частности D-глюкоза воспринимается как сладкое вещество, благодаря способности взаимодействовать с вкусовыми рецепторами языка, в то время как L-глюкоза безвкусна, поскольку ее конфигурация не воспринимается вкусовыми рецепторами.

В общем виде строение альдоз и кетоз можно представить следующим образом.

Стереоизомерия. Молекулы моносахаридов содержат несколько центров хиральности, что служит причиной существования многих стереоизомеров, отвечающих одной и той же структурной формуле. Например, в альдогексозе имеются четыре асимметрических атома углерода и ей соответствуют 16 стереоизомеров (24), т. е. 8 пар энантиомеров. По сравнению с соответствующими альдозами кетогексозы содержат на один хиральный атом углерода меньше, поэтому число стереоизомеров (23) уменьшается до 8 (4 пары энантиомеров).

Открытые (нециклические) формы моносахаридов изображают в виде проекционных формул Фишера. Углеродную цепь в них записывают вертикально. У альдоз наверху помещают альдегидную группу, у кетоз - соседнюю с карбонильной первичную спиртовую группу. С этих групп начинают нумерацию цепи.

Для обозначения стереохимии используется D,L-система. Отнесение моносахарида к D- или L-ряду проводят по конфигурации хирального центра, наиболее удаленного от оксогруппы, независимо от конфигурации остальных центров! Для пентоз таким «определяющим» центром является атом С-4, а для гексоз - С-5. Положение группы ОН у последнего центра хиральности справа свидетельствует о принадлежности моносахарида к D-ряду, слева - к L-ряду, т. е. по аналогии со стереохимическим стандартом - глицериновым альдегидом

Циклические формы. Открытые формы моносахаридов удобны для рассмотрения пространственных отношений между стереоизомерными моносахаридами. В действительности моносахариды по строению являются циклическими полуацеталями. Образование циклических форм моносахаридов можно представить как результат внутримолекулярного взаимодействия карбонильной и гидроксильной групп, содержащихся в молекуле моносахарида.

Впервые циклическую полуацетальную формулу глюкозы предложил А. А. Колли (1870). Он объяснил отсутствие некоторых альдегидных реакций у глюкозы наличием трехчленного этиленоксидного (α-окисного) цикла:

Позже Толленс (1883) предложил аналогичную полуацетальную формулу глюкозы, но с пятичленным (γ-окисным) бутиленоксидным кольцом:

Формулы Колли - Толленса громоздки и неудобны, не отражают строения циклической глюкозы, поэтому были предложены формулы Хеуорса.

В результате циклизации образуются термодинамически более устойчивые фуранозные (пятичленные) и пиранозные (шестичленные) циклы. Названия циклов происходят от названий родственных гетероциклических соединений - фурана и пирана.

Образование этих циклов связано со способностью углеродных цепей моносахаридов принимать достаточно выгодную клешневидную конформацию. Вследствие этого в пространстве оказываются сближенными альдегидная (или кетонная) и гидроксильная при С-4 (или при С-5) группы, т. е. те функциональные группы, в результате взаимодействия которых осуществляется внутримолекулярная циклизация.

В циклической форме создается дополнительный центр хиральности - атом углерода, ранее входивший в состав карбонильной группы (у альдоз это С-1). Этот атом называют аномерным, а два соответствующих стереоизомера - α- и β-аномерами (рис. 11.1). Аномеры представляют собой частный случай эпимеров.

У α-аномера конфигурация аномерного центра одинакова с конфигурацией «концевого» хирального центра, определяющего принадлежность к d- или l-ряду, а у β-аномера - противоположна. В проекционных формулах Фишера у моносахаридов d-ряда в α-аномере гликозидная группа ОН находится справа, а в β-аномере - слева от углеродной цепи.

Рис. 11.1. Образование α- и β-аномеров на примере d-глюкозы

Формулы Хеуорса. Циклические формы моносахаридов изображают в виде перспективных формул Хеуорса, в которых циклы показывают в виде плоских многоугольников, лежащих перпендикулярно плоскости рисунка. Атом кислорода располагают в пиранозном цикле в дальнем правом углу, в фуранозном - за плоскостью цикла. Символы атомов углерода в циклах не указывают.

Для перехода к формулам Хеуорса циклическую формулу Фишера преобразуют так, чтобы атом кислорода цикла располагался на одной прямой с атомами углерода, входящими в цикл. Это показано ниже на примере a-d-глюкопиранозы путем двух перестановок у атома С-5, что не изменяет конфигурацию этого асимметрического центра (см. 7.1.2). Если преобразованную формулу Фишера расположить горизонтально, как требуют правила написания формул Хеуорса, то заместители, находившиеся справа от вертикальной линии углеродной цепи, окажутся под плоскостью цикла, а те, что были слева, - над этой плоскостью.

У d-альдогексоз в пиранозной форме (и у d-альдопентоз в фуранозной форме) группа СН2ОН всегда располагается над плоскостью цикла, что служит формальным признаком d-ряда. Гликозидная гидроксильная группа у a-аномеров d-альдоз оказывается под плоскостью цикла, у β-аномеров - над плоскостью.

D-ГЛЮКОПИРАНОЗА

По аналогичным правилам осуществляется переход и у кетоз, что показано ниже на примере одного из аномеров фуранозной формы d-фруктозы.

Циклоцепная таутомерия обусловлена переходом открытых форм моносахаридов в циклические и наоборот.

Изменение во времени угла вращения плоскости поляризации света растворами углеводов называют мутаротацией.

Химическая сущность мутаротации состоит в способности моносахаридов к существованию в виде равновесной смеси таутомеров - открытой и циклических форм. Такой вид таутомерии называется цикло-оксо-таутомерией.

В растворах равновесие между четырьмя циклическими таутомерами моносахаридов устанавливается через открытую форму - оксоформу. Взаимопревращение a- и β-аномеров друг в друга через про- межуточную оксоформу называется аномеризацией.

Таким образом, в растворе d-глюкоза существует в виде таутомеров: оксоформы и a- и β-аномеров пиранозных и фуранозных циклических форм.

ЛАКТИМ-ЛАКТАМНАЯ ТАУТОМЕРИЯ

Этот вид таутомерии характерен для азотсодержащих гетероциклов с фрагментом N=C-ОН.

Взаимопревращение таутомерных форм связано с переносом протона от гидроксильной группы, напоминающей фенольную ОН-группу, к основному центру - пиридиновому атому азота и наоборот. Обычно лактамная форма в равновесии преобладает.

Моноаминомонокарбоновые.

По полярности радикала:

С неполярным радикалом:(Аланин,валин, лейцин, фенилаланин)Моноамино,монокарбоновые

С полярным незаряженным радикалом(Глицин, серин, аспарагин, глутамин)

С отрицательно заряженным радикалом(Аспарагиновая,глутаминовая кислота)моноамино,дикарбоновые

С положительно заряженным радикалом(лизин,гистидин) диамино,монокарбоновые

Стереоизомерия

Все природные α-аминокислоты, кроме глицина (NH 2 -CH 2 - COOH), имеют асимметрический атом углерода (α-углеродный атом), а некоторые из них даже два хиральных центра, например, треонин. Таким образом, все аминокислоты могут существовать в виде пары несовместимых зеркальных антиподов (энантиомеров).

За исходное соединение, с которым принято сравнивать строение 
α-аминокислот, условно принимают D- и L-молочные кислоты, конфигурации которых, в свою очередь, установлены по D- и L-глицериновым альдегидам.

Все превращения, которые осуществляются в этих рядах при переходе от глицеринового альдегида к α-аминокислоте, выполняются в соответствии с главным требованием − они не создают новых и не разрывают старых связей у асимметрического центра.

Для определения конфигурации α-аминокислоты в качестве эталона часто используют серин (иногда аланин).

Природные аминокислоты, входящие в состав белков, относятся к L-ряду. 
D-формы аминокислот встречаются сравнительно редко, они синтезируются только микроорганизмами и называются «неприродными» аминокислотами. Животными организмами D-аминокислоты не усваиваются. Интересно отметить действие D- и L-аминокислот на вкусовые рецепторы: большинство аминокислот L-ряда имеют сладкий вкус, а аминокислоты D-ряда − горькие или безвкусные.

Без участия ферментов самопроизвольный переход L-изомеров в D-изомеры с образованием эквимолярной смеси (рацемическая смесь) осуществляется в течение достаточно длительного промежутка времени.

Рацемизация каждой L-кислоты при данной температуре идет с определенной скоростью. Это обстоятельство можно использовать для установления возраста людей и животных. Так, например, в твердой эмали зубов имеется белок дентин, в котором L-аспартат переходит в D-изомер при температуре тела человека со скоростью 0,01% в год. В период формирования зубов в дентине содержится только L-изомер, поэтому по содержанию D-аспартата можно рассчитать возраст человека или животного.

I. Общие свойства

1. Внутримолекулярная нейтрализация → образуется биполярный цвиттер-ион:

Водные растворы электропроводны. Эти свойства объясняются тем, что молекулы аминокислот существуют в виде внутренних солей, которые образуются за счет переноса протона от карбоксила к аминогруппе:

цвиттер-ион

Водные растворы аминокислот имеют нейтральную, кислую или щелочную среду в зависимости от количества функциональных групп.

2. Поликонденсация → образуются полипептиды (белки):


При взаимодействии двух α-аминокислот образуется дипептид .

3. Разложение → Амин + Углекислый газ:

NH 2 -CH 2 -COOH → NH 2 -CH 3 + CO 2

IV. Качественная реакция

1. Все аминокислоты окисляются нингидрином с образованием продуктов сине-фиолетового цвета!

2. С ионами тяжелых металлов α-аминокислоты образуют внутрикомплексные соли. Комплексы меди (II), имеющие глубокую синюю окраску, используются для обнаружения α-аминокислот.

Физиологические активные пептиды. Примеры.

Пептиды, обладая высокой физиологической активностью, регулируют различные биологические процессы. По биорегуляторному действию пептиды принято делить на несколько групп:

· соединения, обладающие гормональной активностью (глюкагон, окситоцин, вазопрессин и др.);

· вещества, регулирующие пищеварительные процессы (гастрин, желудочный ингибирующий пептид и др.);

· пептиды, регулирующие аппетит (эндорфины, нейропептид-Y, лептин и др.);

· соединения, обладающие обезболивающим эффектом (опиоидные пептиды);

· органические вещества, регулирующие высшую нервную деятельность, биохимические процессы, связанные с механизмами памяти, обучения, возникновением чувства страха, ярости и др.;

· пептиды, которые регулируют артериальное давление и тонус сосудов (ангиотензин II, брадикинин и др.).

· пептиды, которые обладают противоопухолевым и противовоспалительным свойствами (Луназин)

· Нейропептиды - соединения, синтезируемые в нейронах, обладающие сигнальными свойствами

Классификация белков

-по форме молекул (глобулярные или фибриллярные);

-по молекулярной массе (низкомолекулярные, высокомолекулярные и др.);

-по химическому строению (наличие или отсутствие небелковой части);

-по локализации в клетке (ядерные, цито-плазматические, лизосомальные и др.);

-по локализации в организме (белки крови, печени, сердца и др.);

-по возможности адаптивно регулировать количество данных белков : белки, синтезирующиеся с постоянной скоростью (конститутивные), и белки, синтез которых может усиливаться при воздействии факторов среды (индуцибельные);

-по продолжительности жизни в клетке (от очень быстро обновляющихся белков, с Т 1/2 менее 1 ч, до очень медленно обновляющихся белков, Т 1/2 которых исчисляют неделями и месяцами);

-по схожим участкам первичной структуры и родственным функциям (семейства белков).

Классификация белков по химическому строению

Простые белки .Некоторые белки содержат в своём составе только полипептидные цепи, состоящие из аминокислотных остатков. Их называют "простые белки". Примером простых белков - гистоны ; в их составе содержится много аминокислотных остатков лизина и аргинина, радикалы которых имеют положительный заряд .

2. Сложные белки . Очень многие белки, кроме полипептидных цепей, содержат в своём составе небелковую часть, присоединённую к белку слабыми или ковалентными связями. Небелковая часть может быть представлена ионами металлов, какими-либо органическими молекулами с низкой или высокой молекулярной массой. Такие белки называют "сложные белки". Прочно связанная с белком небелковая часть носит название простетической группы.

У биополимеров, макромолекулы которых состоят из полярных и неполярных групп, сольватируются полярные группы, если растворитель полярен. В неполярном растворителе, соответственно, сольватируются неполярные участки макромолекул.

Обычно он хорошо набухает в жидкости, близкой к нему по химическому строению. Так, углеводородные полимеры типа каучуков набухают в неполярных жидкостях: гексане, бензоле. Биополимеры, в состав молекул которых входит большое количество полярных функциональных групп, например, белки, полисахариды, лучше набухают в полярных растворителях: воде, спиртах и т.д.

Образование сольватной оболочки молекулы полимера сопровождается выделением энергии, которая называется теплотой набухания .

Теплота набухания зависит от природы веществ. Она максимальна при набухании в полярном растворителе ВМС, содержащего большое количество полярных групп и минимальна при набухании в неполярном растворителе углеводородного полимера.

Кислотность среды, при которой устанавливается равенство положительных и отрицательных зарядов и белок становится электронейтральным, называется изоэлектрической точкой (ИЭТ) . Белки, у которых ИЭТ находится в кислой среде, называются кислыми. Белки, у которых значение ИЭТ находится в щелочной среде, называются основными. У большинства растительных белков ИЭТ находится в слабокислой среде

. Набухание и растворение ВМС зависят от:
1. природы растворителя и полимера,
2. строения макромолекул полимера,
3. температуры,
4. присутствия электролитов,
5. от рН среды (для полиэлектролитов).

Роль 2,3-дифосфоглицерата

2,3-Дифосфоглицерат образуется в эритроцитах из 1,3-дифосфоглицерата, промежуточного метаболита гликолиза, в реакциях, получивших название шунт Раппопорта.

Реакции шунта Раппопорта

2,3-Дифосфоглицерат располагается в центральной полости тетрамера дезоксигемоглобина и связывается с β-цепями, образуя поперечный солевой мостик между атомами кислорода 2,3-дифосфоглицерата и аминогруппами концевого валина обеих β-цепей, также аминогруппами радикалов лизина и гистидина.

Расположение 2,3-дифосфоглицерата в гемоглобине

Функция 2,3-дифосфоглицерата заключается в снижении сродства гемоглобина к кислороду. Это имеет особенное значение при подъеме на высоту, при нехватке кислорода во вдыхаемом воздухе. В этих условиях связывание кислорода с гемоглобином в легких не нарушается, так как концентрация его относительно высока. Однако в тканях за счет 2,3-дифосфоглицерата отдача кислорода возрастает в 2 раза.

Углеводы. Классификация. Функции

Углеводами - называют органические соединения, состоящие из углерода (C), водорода (H) и кислорода(O2). Общая формула таких углеводов Cn(H2O)m. Примером может служить глюкоза (С6Н12О6)

С точки зрения химии углеводы являются органическими веществами, содержащими неразветвленную цепь из нескольких атомов углерода, карбонильную группу (C=O), а также несколько гидроксильных групп(OH).

В организме человека углеводы производятся в незначительном количестве, поэтому основное их количество поступает в организм с продуктами питания.

Виды углеводов.

Углеводы бывают:

1) Моносахариды (самые простые формы углеводов)

Глюкоза С6Н12О6 (основное топливо в нашем организме)

Фруктоза С6Н12О6 (самый сладкий углевод)

Рибоза С5Н10О5 (входит в состав нуклеиновых кислот)

Эритроза С4H8O4 (промежуточная форма при расщеплении углеводов)

2) Олигосахариды (содержат от 2 до 10 остатков моносахаридов)

Сахароза С12Н22О11 (глюкоза + фруктоза, или в просто – тростниковый сахар)

Лактоза C12H22O11 (молочный сахар)

Мальтоза C12H24O12 (солодовый сахар, состоит из двух связанных остатков глюкозы)

110516_1305537009_Sugar-Cubes.jpg

3) Сложные углеводы (состоящие из множества остатков глюкозы)

Крахмал (С6H10O5)n (наиболее важный углеводный компонент пищевого рациона, человек потребляет из углеводов около 80% крахмала.)

Гликоген (энергетические резервы организма, излишки глюкозы, при поступлении в кровь, откладываются про запас организмом в виде гликогена)

крахмал12.jpg

4) Волокнистые, или неусваеваемые, углеводы, определяющиеся как пищевая клетчатка.

Целлюлоза (самое распостраненное органическое вещество на земле и вид клетчатки)

По простой классификации углеводы можно разделить на простые и сложные. В простые входят моносахариды и олигосахариды, в сложные полисахариды и клетчатка.

Основные функции.

Энергетическая.

Углеводы являются основным энергетическим материалом. При распаде углеводов высвобождаемая энергия рассеивается в виде тепла или накапливается в молекулах АТФ. Углеводы обеспечивают около 50 – 60 % суточного энергопотребления организма, а при мышечной деятельности на выносливость - до 70 %. При окислении 1 г углеводов выделяется 17 кДж энергии (4,1 ккал). В качестве основного энергетического источника в организме используется свободная глюкоза или запасенные углеводы в виде гликогена. Является основным энергетическим субстратом мозга.

Пластическая.

Углеводы (рибоза, дезоксирибоза) используются для построения АТФ, АДФ и других нуклеотидов, а также нуклеиновых кислот. Они входят в состав некоторых ферментов. Отдельные углеводы являются структурными компонентами клеточных мембран. Продукты превращения глюкозы (глюкуроновая кислота, глюкозамин и др.) входят в состав полисахаридов и сложных белков хрящевой и других тканей.

Запас питательных веществ.

Углеводы накапливаются (запасаются) в скелетных мышцах, печени и других тканях в виде гликогена. Систематическая мышечная деятельность приводит к увеличению запасов гликогена, что повышает энергетические возможности организма.

Специфическая.

Отдельные углеводы участвуют в обеспечении специфичности групп крови, исполняют роль антикоагулянтов (вызывающие свертывание), являясь рецепторами цепочки гормонов или фармакологических веществ, оказывая противоопухолевое действие.

Защитная.

Сложные углеводы входят в состав компонентов иммунной системы; мукополисахариды находятся в слизистых веществах, которые покрывают поверхность сосудов носа, бронхов, пищеварительного тракта, мочеполовых путей и защищают от проникновения бактерий и вирусов, а также от механических повреждений.

Регуляторная.

Клетчатка пищи не поддается процессу расщепления в кишечнике, однако активирует перистальтику кишечного тракта, ферменты, использующиеся в пищеварительном тракте, улучшая пищеварение и усвоение питательных веществ.

Светлана Панченко
Интегрированный урок химии и биологии по теме «Углеводы. Значение углеводов в жизни человека»

Цели :

Продолжить формирование системы знаний о классах органических соединений и генетической связи между ними; способствовать закреплению понимания взаимосвязи применения, свойств и химического строения веществ .

Систематизировать знания об углеводах , их строении, нахождении в природе и свойствах, а также значении в жизни человека .

Продолжить формирование навыков работы с реактивами, химической посудой , учебной и научно-популярной литературой, Интернет ресурсами .

Развивать познавательный интерес , творческие способности, уверенность в своих силах, чувство ответственности за порученное дело, умение анализировать, сравнивать, делать выводы.

Формируемые общие компетенции :

ОК1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес .

ОК3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.

ОК4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.

Вид занятия : урок

Тип урока : изучение нового материала

Техническое оснащение занятия : компьютер, мультимедийный проектор, презентация, таблицы

Ход урока:

1. Организационный момент

2. Основная часть

Сегодня у нас необычный урок . Мы совершим с вами экскурс одновременно в мир биологии и химии .

Все мы знаем очень точно : ЭТО энергии источник. В организм с растительной пищей поступает И энергией его снабжает, Мозг головной и сердце питает. В сахаре ЭТОГО не счесть, В овощах и фруктах ЭТО есть.

Изучив материал урока , вы скажете, что за вещество находится в ящике. Вернемся к этому вопросу в конце нашего занятия. Для того, чтобы любой живой организм нормально функционировал, ему необходима энергия. Человеческий организм не может использовать готовую солнечную энергию, как это делают зелёные растения. В результате фотосинтеза , как вы знаете, из углекислого газа и воды в зеленых растениях образуется глюкоза.

6 Н2О + 6 СО2 +2920 кДж С6Н12О6 + 6 О2

Основные исследования Климента Аркадьевича Тимирязева члена-корреспондента Петербургской АН по физиологии растений посвящены изучению процесса фотосинтеза , для чего им были разработаны специальные методики и аппаратура. Он установил, что ассимиляция растениями углерода из углекислоты воздуха происходит за счёт энергии солнечного света, главным образом в красных и синих лучах, наиболее полно поглощаемых хлорофиллом. Человек получает энергию в виде пищи, а затем уже в клетках тела в результате химических превращений энергия солнечного света высвобождается и используется на нужды организма. Считается, что на 60% потребности человека в энергии должны обеспечиваться углеводами . Ежедневно человеку необходимо до 500 граммов углеводов . Тема нашего занятия «Углеводы . Значение углеводов в жизни человека ». Углеводы есть в клетках всех живых организмов. В животной клетке содержание углеводов составляет 1-2% , а в растительной достигает в некоторых случаях 85-90% от массы сухого вещества клетки. Как вы уже заметили основная биологическая функция углеводов – энергетическая . При их ферметативном расщеплении и окислении молекул углеводов выделяется энергия , которая обеспечивает жизнедеятельность организма . При полном расщеплении 1 грамма углеводов освобождается 17 ,6 кДж. Усиленное расщепление углеводов происходит , например, при прорастании семян, интенсивной мышечной работе , длительном голодании. Углеводы выполняют также запасающую функцию. При избытке они накапливаются в клетке в качестве запасающих веществ (крахмал, гликоген) и при необходимости используются организмом как источник энергии. Также важна структурная, или строительная функция углеводов . Они используются в качестве строительного материала. Так целлюлоза благодаря особому строению нерастворима в воде и обладает высокой прочностью. В среднем 20-50% материала клеточных стенок растений составляет целлюлоза, а волокна хлопка – почти чистая целлюлоза. Хитин входит в состав клеточных стенок некоторых простейших и грибов. В качестве важного компонента наружного скелета хитин встречается у отдельных групп животных, например у членистоногих. Углеводы выполняют защитную функцию. Так, камеди (смолы, выделяющиеся при повреждении стволов и веток растений, например слив, вишен, препятствующие проникновению в раны болезнетворных микроорганизмов, являются производными моносахаридов. Человек получает углеводы в основном из продуктов растительного происхождения (зерновые и бобовые культуры, картофель, фрукты и овощи) . Углеводы – полифункциональные соединения. Это органические вещества, молекулы которых состоят из атомов углерода , водорода и кислорода, причем водород и кислород находятся в них, как правило, в таком же соотношении, как и в молекуле воды (2 :1) . «Фруктовые воды несут нам углеводы » - это шуточное изречение И. Ильфа и Е. Петрова недалеко от истины. Действительно, во фруктовых водах можно обнаружить органические соединения, состав которых отвечает общей формуле Cn (H2O) m, поэтому они получили название углеводы . Русский химик Карл Генрихович (Карл Эрнст Генрих) Шмидт, профессор Дерптского университета (Тарту) в 1844 году предложил термин «углеводы » для обозначения класса природных соединений, называемых сахарами. К углеводам относятся сахара и вещества, превращающиеся в них при гидролизе. Преподаватель : вспомните, что такое гидролиз? Ребята отвечают : гидролиз – это взаимодействие вещества с водой, при котором составные части вещества соединяются с составными частями воды. Существуют : моносахариды, дисахариды и полисахариды. Примеры моносахаридов : глюкоза, галактоза, фруктоза; дисахаридов – мальтоза, лактоза, сахароза; полисахаридов – гликоген, крахмал, целлюлоза. Моносахариды – это углеводы , которые не гидролизуются, т. е. не разлагаются водой. В зависимости от числа атомов углерода в молекуле их делят на триозы, тетрозы, пентозы, гексозы и другие. Они представляют собой своеобразные «кирпичики» , из которых построены молекулы ди – и полисахаридов. К важнейшим гексозам относятся глюкоза и фруктоза. Фруктоза в свободном виде содержится в клетках растений. Глюкоза есть в клетках всех организмов. Особенно много глюкозы в соке винограда, поэтому её называют еще виноградным сахаром. Смотрим видеоопыт : определить наличие глюкозы можно с помощью гидроксида меди (II) . Из ягоды винограда выжмем сок. Прильем к соку несколько капель раствора сульфата меди (II) и раствор щелочи. Нагреем раствор. Цвет раствора начинает изменяться. При кипячении раствора образуется красный осадок Си2О. Это доказывает наличие глюкозы в виноградном соке. Глюкоза имеет слабо сладкий вкус, а фруктоза самая сладкая из всех сахаров. Мёд в основном состоит из смеси глюкозы и фруктозы, которая слаще глюкозы, вот почему он очень сладкий. Мёд называют “эликсиром молодости, диетой долголетия” так как придаёт бодрость, способствует пищеварению, восстанавливает память, оказывает легкое успокаивающее влияние на центральную нервную систему. Фруктозу еще называют плодовым, цветочным сахаром. Фруктоза слаще сахарозы в 10 раз. Ее использование в пищу желательно тем людям, у кого обмен веществ несколько нарушен. Глюкоза и фруктоза являются изомерами. Преподаватель задает вопрос : какие вещества являются изомерами? Ребята отвечают : изомеры – это вещества, имеющие одинаковый качественный и количественный состав, но разное строение молекул и, следовательно, разные свойства. Глюкоза в природе существует в виде двух таутомерных форм : альдегидной и циклической, находящихся в отличии от изомеров в равновесии друг с другом. Физические свойства глюкозы : белые кристаллы, слабо сладкие на вкус, растворимые в воде. Химические свойства : глюкоза, как и многоатомный спирт, как вы знаете, взаимодействует со свежеприготовленным гидроксидом меди (II) . При этом осадок растворяется и образуется ярко-синий раствор сахарата меди (II) . Проведем демонстрационный эксперимент : в пробирке раствор глюкозы, добавим немного раствора медного купороса и раствор щелочи, затем еще немного глюкозы. Вы наблюдаете образование ярко – синего раствора. Глюкоза растворяет гидроксид меди (II) . Затем смесь нагреем. При нагревании сначала образуется желтый гидроксид меди(I, затем красный осадок оксида меди(I) . Глюкоза окисляется до глюконовой кислоты. Восстановительная способность присуща альдегидам. Глюкоза также дает одну из красивейших реакций в химии – реакцию «серебряного зеркала» с аммиачным раствором оксида серебра (смотрим видеоопыт) . Как вы знаете, эта реакция является качественной на альдегиды. Вещества, проявляющие характерные свойства двух разных классов органических соединений, имеют двойственную функцию. Глюкоза является одновременно и многоатомным спиртом, и альдегидом, то есть альдегидоспиртом. В результате реакции гидрирования глюкозы образуется шестиатомный спирт сорбит С6Н12О6 + Н2 ® С6Н8 (ОН) 6

Наибольшее значение имеют реакции - брожение глюкозы под действием ферментов, вырабатываемых микроорганизмами :

спиртовое С6Н12О6 ® 2С2Н5ОН + 2СО2

молочнокислое С6Н12О6 ® 2СН3СНОНСООН

маслянокислое С6Н12О6 ® С3Н7СООН + 2СО2 + 2Н2

полное окисление глюкозы С6Н12О6 + 6О2 ® 6СО2 + 6Н2О

Преподаватель просит собрать модели молекул продуктов брожения глюкозы – этилового спирта, молочной кислоты, масляной кислоты. Пока ребята собирают модели молекул обучающиеся отвечают на вопросы : к какому классу соединений относится этиловый спирт? К какому классу соединений относится масляная кислота? Назовите функциональную группу спиртов, карбоновых кислот. Дайте название молочной кислоты по международной номенклатуре. Дисахариды – это углеводы , молекулы которых состоят из двух остатков моносахаридов, соединенных друг с другом за счет взаимодействия гидроксильных групп. Это всем хорошо известные лактоза (молочный сахар, присутствующий в молоке млекопитающих, в том числе и человека ) и сахароза (тростниковый или свекловичный сахар) . Сам термин дисахарид красноречиво говорит о том, что в молекулах этих веществ между собой связаны два остатка моносахаридов. Так в сахаре – глюкоза и фруктоза, а в лактозе – глюкоза и галактоза. Послушаем историческую справку (сообщение обучающегося) : тростниковый сахар был известен людям достаточно давно. Родиной сахарного тростника считается Индия. В соке этого растения содержится углевод сахароза , который мы привычно называем сахаром. Сейчас сахар – постоянный спутник нашего стола, без которого гостей не накормишь, да и самим чашки чая не выпить. Было время, когда сахар считали дорогим лекарством и покупали в аптеках по той же цене, что и серебро. В двенадцатом веке сахарный тростник стали возделывать на Сицилии, а в шестнадцатом веке он был завезен на Кубу и другие острова Карибского моря. Примерно в то же время сахарозу стали завозить в Европу. В России сахар появился в 1273 году (первое упоминание о кристаллическом сахаре, ввозимом с заморскими товарами, относится ко времени правления великого князя Василия Ярославича, а в Европе – в 1747 году. Производство сахара из свеклы связано с именем Андреаса Сигизмунда Марграффа, немецкого химика и металлурга . Марграфф одним из первых применил в химических исследованиях микроскоп, с помощью которого и обнаружил в 1747 году кристаллы сахара в свекольном соке. В России спрос на сахар сильно возрос с середины XVII века, когда начали употреблять чай, быстро ставший национальным напитком. В 1718 году указом Петра I купцу Верстову было поручено строительство первой в России “сахарной мануфактуры. Массовое производство сахарозы из свеклы началось более полтора века тому назад во Франции. Как заменитель сахара, не отличающегося от него по вкусу, для людей, страдающих сахарным диабетом, используют вещество, которое вы узнаете, разгадав шараду :

Слог мой первый метлой выметают.

Слогом вторым информатик считает.

В целом скажу, дорогие друзья,

Для многих больных вместо сахара я. (Сорбит)

Уравнение гидролиза сахарозы : С12Н22О11 + Н2О -> С6Н12О6 + С6Н12О6

глюкоза фруктоза

инвертный сахар

Преподаватель ставит проблему : если взять стакан воды и растворить ложку сахара, предварительно попробовав на вкус, затем прокипятить этот раствор и снова попробовать на вкус, то прокипяченный раствор будет слаще. Почему? Ребята отвечают : при гидролизе сахарозы образуется кроме глюкозы фруктоза, которая в 10 раз слаще сахарозы. Преподаватель просит обучающихся вспомнить что это за вещества электролиты? Ребята отвечают : водные растворы некоторых веществ являются проводниками электрического тока. Электролитами являются кислоты, основания и соли. Преподаватель : водный раствор сахара является электролитом? Ребята отвечают : нет, так как он не проводит электрический ток.

Лактоза – единственный углевод животного происхождения, находится в молоке животных – 4% и, несмотря на это, молоко не отличается особой сладостью, так как она менее сладкая, чем глюкоза. Полисахариды – это углеводы , которые гидролизуются с образованием множества молекул моносахаридов. Их относят к биополимерам. Крахмал – белый порошок нерастворимый в холодной воде, а в горячей воде он набухает. Он совершено безвкусен. Крахмал представляет собой смесь двух полисахаридов одинакового состава – амилозы и амилопектина. Амилоза – линейный полимер, массовая доля обычно составляет 10-20%. Амилопектин имеет разветвленную структуру, массовая доля обычно составляет 80-90%. Крахмал уже усваивается не так быстро, как сахар. Чтобы облегчить его усвоение, содержащие крахмал продукты подвергают тепловой обработке, то есть картофель, рис варят, хлеб пекут. В этих условиях идет частичный гидролиз крахмала, то есть образуются полимеры поменьше – декстрины, а в пищеварительном тракте образуется конечный продукт гидролиза глюкоза. При взаимодействии с йодом крахмал дает синее окрашивание. Это качественная реакция на крахмал. Крахмал считают основным углеводом пищи . Излишки глюкозы соединяются в особый вид крахмала – гликоген или животный крахмал. Он запасается в мышцах, а больше всего в печени. Целлюлоза – тоже растительный полисахарид, образованный глюкозой. Её еще называют клетчаткой. Она содержится в овощах, фруктах, злаках. Это волокнистое вещество нерастворимое в воде. У целлюлозы есть один недостаток – она непитательна. Конечно, мы её едим, потому что она содержится в растениях. Но она не переваривается в желудочно-кишечном тракте. Так как нет ферментов, которые расщепляют её. А зачем тогда она нам нужна? Оказывается она необходима! Одно из самых замечательных свойств пищевых волокон – их способность удерживать воду, например, сырые морковь, яблоко, капуста в желудке и кишечнике разбухают вдвое и создают иллюзию сытости. Еще один плюс пищевых волокон – они поглощают холестерин и желчные кислоты, что тормозит камнеобразование. Поэтому ешьте побольше капусты, моркови, свёклы, постарайтесь есть яблоки, смородину, малину. Из крупяных – пшено, перловка, овес и из бобовых – горох, фасоль, а так же дары леса – грибы, орехи. Сообщение обучающегося : Когда-то где-то на Землю упал луч Солнца. В той или иной форме он вошел в состав хлеба, который послужил нам пищей. Он преобразился в наши мускулы, в наши нервы… Он приводит нас в движение. Быть может в эту минуту он играет в нашем мозгу…” Единственные живые организмы, которые способны самостоятельно синтезировать сахара из неорганических веществ – зелёные растения. В начале XIX века ученые, такие как профессор Тюбингенского университета фон Моль, раздраженно критиковали книгу Юстуса Либиха : “Оказывается уже не земле растительный мир обязан своим питанием, нет, растения питаются воздухом, водой и так называемыми питательными солями, которые они разыскивают в почве!”

Крахмал и целлюлоза являются изомерами, их формула (С6Н10О5) n. В настоящее время мы точно знаем, что зеленые растения из углекислого газа и воды на свету в присутствии хлорофилла синтезируют органические вещества (глюкозу) .

Общая схема гидролиза полисахаридов упрощенно может быть представлена так :

(С6Н10О5) n + n Н2О n С6Н12О6

Решите задачу : гидролизом 250 г древесных опилок, содержание целлюлозы в которых составляет 45%, было получено 62 г глюкозы. Определите массовую долю выхода глюкозы от теоретически возможного.

Для организма человека крахмал , наряду с сахарозой, служит основным поставщиком углеводов – одного из важнейших компонентов пищи. Под действием ферментов крахмал гидролизуется до глюкозы, которая окисляется и выделяется большое количество энергии, необходимое для функционирования клетки. Именно поэтому ее широко используют в лечебных целях (применяют внутрь или вводят внутривенно ослабленным больным) . При добавлении глюкозы к сахарозе она препятствует ее кристаллизации и потому используется в кондитерском производстве для получения карамели, мармелада и т. д. Из целлюлозы изготавливают искусственные волокна, полимерные пленки, пластмассы, бездымный порох, лаки.

3. Закрепление изученного материала.

Тест :

1. Какое из названных химических соединений не является биополимером?

А) белок Б) глюкоза В) дезоксирибонуклеиновая кислота Г) целлюлоза

2. Из каких соединений синтезируются углеводы при фотосинтезе ?

А) из О2 и Н2О Б) из СО2 и Н2 В) из СО2 и Н2О Г) из СО2 и Н2СО3

3. Какой из продуктов целесообразнее давать уставшему марафонцу на дистанции для поддержания сил?

А) виноградный сок Б) немного сливочного масла В) кусок мяса Г) немного минеральной воды

4. В клетках животных запасным углеводом является :

А) целлюлоза Б) крахмал В) глюкоза Г) гликоген

5. Реакцию серебряного зеркала дает :

А) глюкоза Б) этанол В) бутан Г) крахмал

6. Пара изомеров :

А) метанол и этанол Б) метан и этан В) глюкоза и фруктоза Г) ацетон и этаналь

7. Синее окрашивание с раствором йода дает :

А) глюкоза Б) крахмал В) целлюлоза Г) сахароза

А теперь вернемся к нашему ящику. Напомню вам

Все мы знаем очень точно : ЭТО энергии источник. В организм с растительной пищей поступает И энергией его снабжает, Мозг головной и сердце питает. В сахаре ЭТОГО не счесть, В овощах и фруктах ЭТО есть. А больше всего его в соке винограда. Что это за вещество? Конечно это глюкоза.

4. Подведение итогов урока : углеводы по составу можно разделить на простые (глюкоза, фруктоза и другие) и сложные (крахмал, гликоген, целлюлоза и другие) . Глюкоза окисляется в организме до углекислого газа и воды с выделением энергии, необходимой для жизнедеятельности живого организма . Они содержат две функциональные группы :

1) гидроксогруппу, структурная формула которой -ОН

2) альдегидную, структурная формула которой -НС=О

Углеводы в организме человека могут запасаться ! Недостаток углеводов в пище вреден и приводит к тому, что в организме начинается усиленное использование энергетических возможностей белков и жиров. В этом случае резко увеличивает количество продуктов их расщепления, вредных для человека . Избыток углеводов в пище вреден и приводит к ожирению. Обильное потребление сахара отрицательно сказывается на функции кишечной микрофлоры, приводит к нарушению обмена холестерина и повышению его уровня в сыворотке крови. Углеводы представляют собой конечные продукты фотосинтеза и являются исходными веществами для биосинтеза других органических соединений. “Белки, жиры и углеводы ,

Пройдут века, эпохи, годы,

К вам мы прикованы на век,

Без вас немыслим человек” . 5. Домашнее задание : Пользуясь опорным конспектом, подготовиться дать характеристику классу углеводов .

Решите задачу : Какова масса молочной кислоты, образующейся при брожении глюкозы массой 400 г, содержащей 10% примесей?

Домашние опыты :

1) Попробуйте долго разжевывать кусочек белого хлеба. Вы заметите, что вкус его становится сладковатым. Это работает фермент амилаза, превращая в мальтозу крахмал, содержащийся в хлебе.

2) Вы, конечно, знаете, что в присутствии свободного йода крахмал синеет (заметьте только, что раствор йода должен быть очень слабым) . Кстати, пользуясь таким раствором (а чтобы приготовить его, достаточно разбавить аптечный раствор водой, можно исследовать на содержание крахмала различные пищевые продукты. Проведите исследование. Результаты оформите в виде таблицы : продукт, наличие крахмала.

Литература.

1) Габриелян О. С. “Химия-10” М .: “Дрофа”, 2011.

2) Единая коллекция цифровых образовательных ресурсов. Химия , 10 класс.

3) Видеофрагмент : “Определение глюкозы в виноградном соке”.

4) ru.wikipedia.org/wiki/Углевод

Углеводы альдозы , а кетонную – кетозы

Функции углеводов в организме.

Основные функции углеводов в организме:

1. Энергетическая функция. Углеводы являются одним из основных источников энергии для организма, обеспечивая не менее 60 % энергозатрат. Для деятельности мозга, почек, крови практически вся энергия поставляется за счет окисления глюкозы. При полном распаде 1 г углеводов выделяется 17,15 кДж/моль или 4,1 ккал/моль энергии.

2. Пластическая или структурная функция . Углеводы и их производные обнаруживаются во всех клетках организма. В растениях клетчатка служит основным опорным материалом, в организме человека кости и хрящи содержан сложные углеводы. Гетерополисахариды, например, гиалуроновая кислота, входят в состав клеточных мембран и органоидов клетки. Участвуют в образовании ферментов, нуклеопротеидов (рибоза, дезоксирибоза) и др.

3. Защитная функция . Вязкие секреты (слизь), выделяемые различными железами, богаты углеводами или их производными (мукополисахаридами и др.) они защищают внутренние стенки половых органов ЖКТ, воздухоносных путей и др. от механических и химических воздействий, проникновения патогенных микробов. В ответ на антигены в организме синтезируются иммунные тела, которые являются гликопротеидами. Гепарин предохраняет кровь от свертывания (входит в противосвертывающую систему) и выполняет антилипидемическую функцию.

4. Регуляторная функция. Пища человека содержит большое количество клетчатки, грубая структура которой вызывает механическое раздражение слизистой оболочки желудка и кишечника, участвуя, таким образом, в регуляции акта перистальтики. Глюкоза в крови участвует в регуляции осмотического давления и поддержании гомеостаза.

5. Специфические функции. Некоторые углеводы выполняют в организме особые функции: участвуют в проведении нервных импульсов, обеспечении специфичности групп крови и т.д.

Классификация углеводов.

Углеводы классифицируют по величине молекул на 3 группы:

1. Моносахариды – содержат 1 молекулу углевода (альдозы или кетозы).

· Триозы (глицериновый альдегид, диоксиацетон).

· Тетрозы (эритроза).

· Пентозы (рибоза и дезоксирибоза).

· Гексозы (глюкоза, фруктоза, галактоза).

2. Олигосахариды - содержат 2-10 моносахаридов.

· Дисахариды (сахароза, мальтоза, лактоза).

· Трисахариды и т.д.

3. Полисахариды - содержат более 10 моносахаридов.

· Гомополисахариды – содержат одинаковые моносахариды (крахмал, клетчатка, целлюлоза состоят только из глюкозы).

· Гетерополисахариды- содержат моносахариды разного вида, их пароизводные и неуглеводные компоненты (гепарин, гиалуроновая кислота, хондроитинсульфаты).

Схема № 1. Классификация углеводов.

Углеводы

Моносахариды Олигосахариды Полисахариды


1. Триозы 1. Дисахариды 1. Гомополисахариды

2. Тетрозы 2. Трисахариды 2. Гетерополисахариды

3. Пентозы 3. Тетрасахариды

4. Гексозы

Свойства углеводов.

1. Углеводы – твердые кристаллические белые вещества, практические все сладкие на вкус.

2. Почти все углеводы хорошо растворимы в воде, при этом образуются истинные растворы. Растворимость углеводов зависит от массы (чем больше масса, тем менее растворимо вещество, например, сахароза и крахмал) и строения (чем разветвленнее структура углевода, тем хуже растворимость в воде, например крахмал и клетчатка).

3. Моносахариды могут находится в двух стереоизомерных формах : L–форма (leavus – левый) и D- форма (dexter – правый). Эти формы обладают одинаковыми химическими свойствами, но отличаются, расположением гидроксидных групп относительно оси молекулы и оптической активностью, т.е. вращают на определенный угол плоскость поляризованного света, который проходит через их раствор. Причем плоскость поляризованного света вращается на одну величину, но в противоположных направлении. Рассмотрим образование стереоизомеров на примере глицеринового альдегида:

СНО СНО

НО -С-Н Н-С-ОН

СН2ОН СН2ОН

L – форма D – форма

При получении моносахаридов в лабораторных условиях, стереоизомеры образуются в соотношении 1:1, в организме синтез происходит под действием ферментов, которые строго отличают L – форму и D – форму. Поскольку синтезу и распаду в организме подвергаются исключительно D-сахара, в эволюции постепенно исчезли L-стереоизомеры (на этом основано определение сахаров в биологических жидкостях с помощью поляриметра).

4. Моносахариды в водных растворах могут взаимопревращаться, такое свойство называют муторатацией.

НО-СН2 О=С-Н

С О НО-С-Н

Н Н Н Н-С-ОН

С С НО-С-Н

НО ОН Н ОН НО-С-Н

С С СН2-ОН

НО-СН2

Н Н ОН

НО ОН Н Н

Бетта-форма.

В водных растворах мономеры, состоящие из 5 и более атомов, могут находится в циклической (кольцевой) альфа- или бетта-формах и незамкнутой (открытой) формах, причем их соотношение 1:1. Олиго- и полисахариды состоят из мономеров в циклической форме. В циклической форме углеводы устойчивы и молоактивны, а в открытой обладают высокой реакционной способностью.

5. Моносахариды могут восстанавливаться до спиртов.

6. В открытой форме могут взаимодействовать с белками, липидами, нуклеотидами без участия ферментов. Эти реакции получили название - гликирования. В клинике применяют исследование уровня гликозилированного гемоглобина или фруктозамина для постановки диагноза сахарный диабет.

7. Моносахариды могут образовывать эфиры. Наибольшее значение имеет свойство углеводов образовывать эфиры с фосфорной кислотой, т.к. чтобы включиться в обмен углевод должен стать фосфорным эфиром, например, глюкоза перед окислением превращается в глюкозо-1-фосфат или глюкозо-6-фосфат.

8. Альдолазы обладают способностью восстанавливать в щелочной среде металлы из их окислов в закиси или в свободное состояние. Это свойство используют в лабораторной практике для обнаружения альдолоз (глюкозы) в биологических жидкостях. Чаще всего используют реакцию Троммера при которой альдолоза восстанавливает окись меди в закись, а сама окисляется в глюконовую кислоту (окисляется 1 атом углерода).

CuSO4 + NaOH Cu(OH)2 + Na2SO4

Голубой цвет

C5H11COH + 2Cu(OH)2 C5H11COOH + H2O + 2CuOH

Кирпично-красный цвет

9. Моносахариды могут окисляться до кислот не только в реакции Троммера. Например, при окислении 6 углеродного атома глюкозы в организме образуется глюкуроновая кислота, которая соединяется с ядовитыми и плохо растворимыми веществами, обезвреживает их и переводит в растворимые, в таком виде эти вещества выводятся из организма с мочой.

10.Моносахариды могут соединяться между собой и образовывать полимеры. Связь, которая при этом возникает называется гликозидной , она образуется за счет ОН-группы первого углеродного атома одного моносахарида и ОН-группой четвертого (1,4-гликозидная связь) или шестого углеродного атома (1,6-гликозидная связь) другого моносахарида. Кроме этого могут образовываться альфа-гликозидная связь (между двумя альфа-формами углевода) или бетта-гликозидная связь (между альфа- и бетта- формами углевода).

11.Олиго- и полисахариды могут подвергаться гидролизу с образованием мономеров. Реакция идет по месту гликозидной связи, причем этот процесс ускоряется в кислой среде. Ферменты в организме человека могут различать альфа- и беттагликозидные связи, поэтому крахмал (имеет альфагликозидные связи) переваривается в кишечнике, а клетчатка (имеет беттагликозидные связи) нет.

12.Моно- и олигосахариды могут подвергаться брожению: спиртовому, молочнокислому, лимоннокислому, маслянокислому.

Общая характеристика углеводов.

Углеводы – органические соединения, которые являются альдегидами или кетонами многоатомных спиртов. Углеводы, содержащие альдегидную группу, называются альдозы , а кетонную – кетозы . Большинство из них (но не все!например, рамноза С6Н12О5) соответствуют общей формуле Сn(Н2О)m, отчего и получили свое историческое название - углеводы. Но есть ряд веществ, например, уксусная кислота С2Н4О2 или СН3СООН, которые хоть и соответствует общей формуле, но не относится к углеводам. В настоящее время принято другое название, которое наиболее верно отражает свойства углеводов – глюциды (сладкий), но историческое название так прочно вошло в жизнь, что им продолжают пользоваться. Углеводы очень широко распространены в природе, особенно в растительном мире, где составляют 70-80 % массы сухого вещества клеток. В животном организме на их долю приходится всего около 2 % массы тела, однако и здесь их роль не менее важна. Доля их участия в общем энергетическом балансе оказывается весьма значительной, превышающей почти в полтора раза долю белков и липидов вместе взятых. В организме углеводы способны откладываться в виде гликогена в печени и расходоваться по мере необходимости.

Химические свойства моносахаридов обусловлены наличием:

  • карбонильной группы (ациклическая форма моносахарида)
  • полуацетального гидроксила (циклическая форма моносахарида)
  • спиртовых ОН групп

Восстановление

  • Продукты восстановления: многоатомные спирты –глициты
  • Восстановитель: NaBH 4 или каталитическое гидрирование.

Глициты используются в качестве заменителей сахара.

При восстановлении альдоз происходит “уравнивание” функциональных групп на концах цепи. В результате из некоторых альдоз (эритрозы, рибозы, ксилозы, аллозы, галактозы) образуются оптически неактивные мезо-соединения, например. При восстановлении кетоз из карбонильной группы возникает новый хиральный центр и образуется смесь неравных количеств диастереомерных спиртов (эпимеров по С2):

Эта реакция доказывает, что D-фруктоза, D-глюкоза и D-манноза имеют одинаковые конфигурации хиральных центров С2, С3, и С4.

Окисление

Окислению могут подвергаться:

  • карбонильная группа
  • оба конца углеродной цепи (карбонильная группа и гидроксогруппа у шестого атома углерода)
  • гидроксогруппа у шестого атома углерода независимо от карбонильной

Вид окисления зависит от природы окислителя.

Мягкое окисление. Гликоновые кислоты

  • Окислитель : бромная вода
  • Что окисляется : карбонильная группа альдоз. Кетозы в этих условиях не окисляются и могут быть таким образом выделены из смесей с альдозами.
  • Продукты окисления : гликоновые кислоты (из ациклических моносахаридов), пяти- и шестичленные лактоны (из циклических).

Восстанавливающие моносахариды. Качественная реакция на альдегидную группу

  • Окислитель : катионы металлов Ag + (OH - реактив Толенса) и Cu 2+ (комплекс Cu 2+ с тартрат-ионом - реактив Фелинга) в щелочной среде
  • Что окисляется : карбонильная группа альдоз и кетоз
  • Продукты окисления : гликоновые кислоты и продукты деструктивного распада

Альдоза + + → гликоновая кислота + Ag + продукты деструктивного окисления

Альдоза + Cu 2+ → гликоновая кислота + Cu 2 O + продукты деструктивного окисления

Восстанавливающие углеводы - углеводы, способные восстанавливать реактивы Толенса и Фелинга. Кетозы проявляют восстанавливающие свойства за счет изомеризации в щелочной среде в альдозы, которые и взаимодействуют далее с окислителем. Процесс превращения кетозы в альдозу происходит в результате енолизации. Образующийся из кетозы енол является общим для нее и 2-х альдоз (эпимеров по С-2). Так, в слабощелочном растворе в равновесии с D-фруктозой находятся ендиол, D-глюкоза и D-манноза.

Эпимеризация - взаимопревращения между альдозами, эпимерами по С2 в щелочном растворе.

Жесткое окисление. Гликаровые кислоты

  • Окислитель : разбавленная азотная кислота
  • Что окисляется : оба конца углеродной цепи. Окисление кетоз азотной кислотой протекает с расщеплением С-С связей.
  • Продукты окисления : гликаровые кислоты

При образовании гликаровых кислот, происходит “уравнивание” функциональных групп на концах цепи и из некоторых альдоз образуются мезо-соединения.

Ферментативное окисление в организме. Гликуроновые кислоты

  • Окислитель : ферменты в организме. В лабораторных условиях для защиты карбонильной группы проводят многостадийный синтез.
  • Что окисляется : гидроксогруппа у шестого атома углерода независимо от карбонильной
  • Продукты окисления : гликуроновые кислоты

Гликуроновые кислоты входят в состав полисахаридов (пектиновые вещества, гепарин). Важная биологическая роль D-глюкуроновой кислоты состоит в том, что многие токсичные вещества выводятся из организма с мочой в виде растворимых глюкуронидов.

Реакции полуацетального гидроксила. Гликозиды

Моносахариды способны присоединять соединения различной природы с образованием гликозидов. Гликозид - молекула, в которой остаток углевода связан с другой функциональной группой посредством гликозидной связи .

В присутствии кислот моносахариды взаимодействуют с соединениями, содержащими гидроксогруппу. В результате образуются циклические ацетали - .

Строение гликозидов

Молекула гликозида состоит из двух частей - углеводная компонента и агликон :

По типу связи углеводного остатка и агликона различают:

По размеру цикла гликозиды:

  • пиранозиды
  • фуранозиды

По природе углевода:

  • глюкозиды (ацетали глюкозы)
  • рибозиды (ацетали рибозы)
  • фруктозиды (ацетали фруктозы)

По природе агликона:

  • фенологликозиды
  • антрахиноновые гликозиды

Получение гликозидов

Распространенный способ получения гликозидов - пропускание газообразного хлороводорода (катализатор) через раствор моносахарида в спирте:

Гидролиз гликозидов

Гликозиды легко гидролизуются в кислой среде, устойчивы к гидролизу в слабощелочной среде. Фуранозиды из-за напряженности цикла гидролизуются легче пиранозидов. В результате гидролиза гликозидов образуется соответствующее гидроксосодержащее соединение (спирт, фенол и т. д.) и моносахарид.

Образование простых эфиров

При взаимодействии спиртовых гидроксогрупп с алкилгалогенидами образуются простые эфиры. Простые эфиры устойчивы к гидролизу, а гликозидная связь гидролизуется в кислой среде:

Образование сложных эфиров

Моносахариды вступают в реакцию ацилирования с ангидридами органических кислород. В результате образуются сложные эфиры. Сложные эфиры гидролизуются как в кислой, так и в щелочной средах:

Дегидратация

Дегидратация углеводов происходит при нагревании с минеральными кислотами.

Рассказать друзьям